SCIENTIFIC NOTE

Comparative Activity of the Codling Moth Granulovirus Against Grapholita molesta and Cydia pomonella (Lepidoptera: Tortricidae)

LAWRENCE A. LACEY1,2, STEVEN P. ARTHURS1 and HEATHER HEADRICK1

ABSTRACT—The granulovirus of codling moth, Cydia pomonella L., CpGV, is now commercialized for codling moth control in pome fruit in the USA and Canada. It is highly specific for codling moth and related species. Comparative assays of CpGV against neonate larvae of another introduced tortricid pest, the oriental fruit moth, Grapholita molesta Busck, revealed a 557 and 589 fold lower susceptibility of neonate larvae compared with the LC50 and LC95 values derived for C. pomonella.

Since its introduction into North America, the oriental fruit moth, Grapholita molesta Busck, has become a widely established pest of peach, nectarine, apricot, and apple (Rothschild and Vickers 1991). There is little information regarding naturally occurring disease of the oriental fruit moth, with the exception of microsporidia in adults (Simchuk and Komarova 1983) and Bacillus thuringiensis in larvae (Grassi and Deseö 1984). Although field trials with various formulations of B. thuringiensis have been reported for oriental fruit moth, results indicate that it is relatively ineffective (Rothschild and Vickers 1991).

Following its initial discovery in infected codling moth Cydia pomonella L. larvae in Mexico in 1964, numerous laboratory and field studies have confirmed the virulence of the codling moth granulovirus (CpGV), against its homologous host (Falcon et al. 1968, Laing and Jaques 1980, Arthurs and Lacey 2004, Cossentine and Jensen 2004). In early host specificity studies, CpGV was also noted to have larvicidal activity against the pea moth, Cydia nigricana (Fabricius) (Payne, 1981) and oriental fruit moth (Falcon et al. 1968), but quantitative assays of the virus have not been reported for the latter species. We conducted bioassays of the Cyd-X formulation of CpGV (Certis USA, Columbia, MD) against oriental fruit moth and codling moth neonates from colonies maintained at the Yakima Agricultural Research Laboratory using the materials and methods described by Lacey et al. (2002). The codling moth diet described by Brinton et al. (1969) (BioServ, Frenchtown, NJ, USA) was used for both species.

Following initial bioassays to determine mortality ranges, five concentrations of Cyd-X that produced mortality in neonate larvae ranging from 10 to 96.7% in oriental fruit moth and 36.7 to 96.7% in codling moth were bioassayed against 30 neonates per concentration. Bioassays were conducted on artificial diet in 2-ml plastic conical autosampler vials (Daigger, Lincolnshire, IL, USA). A 2-mm diameter hole in the cap of each vial covered with stainless steel screen (0.16 mm mesh size) eliminated condensation. Ten µl of aqueous virus suspensions or 10 µl of water for controls was applied to the surface of 1 ml of artificial medium (approximately 100 mm2) in the autosampler vials. The label specified virus concentration of Cyd-X is 3 x 1015 granules per liter. After the surface of the medium had dried, one neonate larva was added to each vial. The vials were incubated for 7 d at 25 ± 1.7 °C and then assessed for larval mortality. The study was repeated for each species on four separate dates. Each date was treated as an individual replicate of each concentration (i.e. data were not pooled before probit analysis).

The results of the assays clearly indicated that oriental fruit moth neonates are susceptible to CpGV, but at a significantly lower level than that observed in codling moth neonates (Table 1). The oriental fruit moth were 557 and 589 times less susceptible to CpGV compared with codling moth, based on probit (normal sigmoid) analysis of the LC50 and LC95, respec-

1Yakima Agricultural Research Laboratory, USDA-ARS, 5230 Konnowac Pass Rd., Wapato, WA 98908
2Author to whom correspondence should be addressed
tively (StatsDirect Ltd, v. 2.4). Based on our methods, the calculated LC\textsubscript{50} and LC\textsubscript{95} of CpGV for oriental fruit moth are 35 and 540 granules per mm2, respectively, but only 0.06 and 0.9 granules per mm2 for codling moth. Although CpGV must be ingested in order to infect a larva, Ballard et al. (2000) demonstrated that the point of entry of codling moth larvae into fruit may not necessarily be where virus is acquired; larvae could become infected by walking or browsing on CpGV-sprayed leaf surfaces in as little as 3.5 min. Ostensibly virus picked up on legs or mouth parts in the absence of browsing leaf surfaces could contaminate the initial point of entry. In our bioassays, neonates of both species may wander over the surface of the medium before boring into it. In the case of codling moth larvae this would provide ample opportunity to acquire virus even at the lower concentrations. Huber (1986) estimated that the LD\textsubscript{50} for neonate larvae could be as low as 1.2 granules per larva.

First generation oriental fruit moth often feed on shoots and young foliage. Although not as active against oriental fruit moth as against codling moth in laboratory bioassays, field activity of Cyd-X against oriental fruit moth neonates at label rates used for codling moth control (0.07-0.44 L/ha) could potentially reduce oriental fruit moth populations if significant feeding of early instars of the first generation occurred on treated foliage. Because natural feeding behavior will influence their susceptibility to CpGV, further field studies are warranted.

We are grateful to Rob Fritts Jr. (Certis) for Cyd-X samples and the Washington Tree Fruit Research Commission for financial support. We thank Don Hostetter and Joel Siegel for helpful reviews of the manuscript.

REFERENCES

Payne, C.C. 1981. The susceptibility of the pea moth, *Cydia nigricana*, to infection by the granulosis virus of the codling moth, *Cydia pomonella*. Journal of Invertebrate Pathology 38: 71-77.

Table 1.

<table>
<thead>
<tr>
<th>Species</th>
<th>n</th>
<th>LC\textsubscript{50} (95% CI)</th>
<th>LC\textsubscript{95} (95% CI)</th>
<th>Slope</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. pomonella</td>
<td>714</td>
<td>6.30 (4.74 – 7.91)</td>
<td>91.62 (63.00 – 155.68)</td>
<td>1.41</td>
</tr>
<tr>
<td>G. molesta</td>
<td>708</td>
<td>3.51 × 103 (2.72 – 4.42 × 103)</td>
<td>5.40 × 104 (3.66 – 9.04 × 104)</td>
<td>1.39</td>
</tr>
</tbody>
</table>