Mammal Fleas (Siphonaptera: Ceratophyllidae)
New for Alaska and the Southeastern Mainland Collected
During Seven Years of a Field Survey of Small Mammals

GLENN E. HAAS¹, JAMES R. KUCERA², AMY M. RUNCK³,
STEPHEN O. MACDONALD⁴ and JOSEPH A. COOK⁴

ABSTRACT
Ten taxa of mammal fleas were among 124 collection records from 12 host species (one shrew, nine rodents and two carnivores), at 72 localities on the southeastern Alaska mainland in 1989 and during an extensive survey of mammals in 1992-1995 and 1997-1999. *Megabothris asio megacolpus* (Jordan) ex *Microtus pennsylvanicus* (Ord), *Malarraeus telchinus* (Rothschild) ex *Peromyscus keeni* (Rhoads) and *Clethrionomys gapperi* (Vigors) are new fleas for Alaska. *Orchopeas caedens* (Jordan) ex *Tamiasciurus hudsonicus* (Erxleben) is a new flea for southeastern Alaska. *Synaptomys borealis* (Richardson) is a new host record for *Opisodasys k. keeni* (Baker). The other six taxa of fleas collected were *Hystrichopsylla dippiei spinata* Holland, *H. o. occidentalis* Holland, *Catallagia charlottensis* (Baker), *Ceratophyllus ciliatus protinus* Jordan, *Megabothris abantis* (Rothschild) and *Opisodasys vesperalis* (Jordan). Of these, *H. o. occidentalis*, *C. charlottensis* and *M. abantis* have seven new host records for the southeastern Alaska mainland. Distribution patterns of the fleas and their host relationships in North America are discussed.

Key Words: fleas, Siphonaptera, mammals, Alaska

INTRODUCTION
The advancement in knowledge of the fleas of southeastern Alaskan mammals has lagged behind that of Alaska west of the Yukon Territory in part due to difficulties of travel in the fragmented, rugged coastal to montane topography. An extensive survey by the University of Alaska Museum, Fairbanks, of shrews, mice, voles, lemmings and some larger mammals, such as arboreal squirrels during 1992-1995 (MacDonald and Cook 1996) and 1997-1999 included the collection of fleas. This survey produced 124 collection records (including three from an earlier study of marten) at 72, mostly new, localities. Two fleas of mice and voles new for Alaska, one squirrel flea new for southeastern Alaska, seven new host records for three other fleas for the southeastern Alaska mainland, and one new lemming host record for a mouse flea were added (Table 1).

MATERIALS AND METHODS
The fieldwork for the mammal survey was conducted as described by Murrell *et al*. (2003) on ticks collected from some of the same mammal specimens that produced some of the fleas reported on here. Full data for the mammal specimens can be obtained at http://arctos.database.museum by tracking the University of Alaska Museum of the

¹ PO Box 60985, Boulder City, NV, United States 89006
² Associated Regional and University Pathologists, Inc., Salt Lake City, UT, United States
³ Biology Department, Idaho State University, Pocatello, ID, United States
⁴ Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, United States
North AF number listed under Material Examined.

In the laboratory the fleas were prepared for microscopic study by transferring them from the labeled field vials of 70% ethanol to a rinse in distilled water, then submerged in 10% KOH until sufficiently bleached (1 hr to 3 days), rinsed two or three times in distilled water, dehydrated in graduated ethanols (to 90%), degreased in oil of wintergreen, rinsed in xylene and mounted in Canada balsam on labeled microscope slides. Voucher specimens were deposited in the United States National Museum (USNM) and the Canadian National Collection of Insects and Arachnids (CNC). Following is a list of collectors and their acronyms used in this paper: C. J. Conroy (CJC), J. A. Cook (JAC), J. Foreit (JF), R. Heinen (RH), S. O. MacDonald (SOM), S. R. Peterson (SRP), A. M. Runck (AMR), C. T. Seaton (CTS), K. D. Stone (KDS), A. A. Tsvetkova (AAT) and M. J. Wike (MJW). Specimens without acronyms are in the collections of the authors.

Table 1.
Mammalian hosts of the 10 taxa of fleas with present records for the southeastern Alaska mainland.

<table>
<thead>
<tr>
<th>Mammal</th>
<th>Fleas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorex cinereus Kerr, masked shrew</td>
<td>Hystrichopsylla o. occidentalis Holland¹</td>
</tr>
<tr>
<td>Tamiasciurus hudsonicus (Erxleben), red squirrel</td>
<td>Ceratophyllus ciliatus protinus Jordan</td>
</tr>
<tr>
<td>Glaucomys sabrinus (Shaw), n. flying squirrel</td>
<td>Orchopeas caedens (Jordan)²</td>
</tr>
<tr>
<td>Peromyscus keeni (Rhoads), Keen’s mouse</td>
<td>H. o. occidentalis</td>
</tr>
<tr>
<td></td>
<td>Catallagia charlottensis (Baker)</td>
</tr>
<tr>
<td></td>
<td>C. c. protinus</td>
</tr>
<tr>
<td></td>
<td>Megabothris abantis (Rothschild)</td>
</tr>
<tr>
<td></td>
<td>Opisodasys k. keeni (Baker)</td>
</tr>
<tr>
<td></td>
<td>Malaraeus telchinus (Rothschild)³</td>
</tr>
<tr>
<td>C. gapperi (Vigors), s. red-backed vole</td>
<td>H. o. occidentalis¹</td>
</tr>
<tr>
<td></td>
<td>C. c. protinus</td>
</tr>
<tr>
<td></td>
<td>M. abantis</td>
</tr>
<tr>
<td>Microtus pennsylvanicus (Ord), meadow vole</td>
<td>H. o. occidentalis¹</td>
</tr>
<tr>
<td></td>
<td>C. charlottensis</td>
</tr>
<tr>
<td></td>
<td>M. abantis¹</td>
</tr>
<tr>
<td></td>
<td>M. telchinus³</td>
</tr>
<tr>
<td></td>
<td>C. charlottensis¹</td>
</tr>
<tr>
<td></td>
<td>M. abantis¹</td>
</tr>
<tr>
<td></td>
<td>Megabothris asio megacolpus (Jordan)³</td>
</tr>
<tr>
<td>M. longicaudus (Merriam), long-tailed vole</td>
<td>M. abantis</td>
</tr>
<tr>
<td>Synaptomys borealis (Richardson), n. bog lemming</td>
<td>M. abantis¹</td>
</tr>
<tr>
<td></td>
<td>O. k. keeni⁴</td>
</tr>
<tr>
<td>Zapus hudsonius (Zimmerman), meadow jumping mouse</td>
<td>M. abantis</td>
</tr>
<tr>
<td>Martes americana (Turton), marten</td>
<td>Hystrichopsylla dippiei spinata Holland</td>
</tr>
<tr>
<td>Mustela vison Schreber, mink</td>
<td>H. d. spinata⁵</td>
</tr>
</tbody>
</table>

¹ New host record for southeastern Alaska.
² New for southeastern Alaska.
³ New for Alaska.
⁴ New host record.
⁵ Probably from marten.
HYSTRICHOPSyllIDAE

Hystrichopsylla dippiei spinata Holland, 1949

Material examined: USA: AK: all from Juneau area; 30.4 km NW, between Amalga Harbor and Windfall Lake, 1♀ ex Martes americana (Turton), 13-xii-89, SRP; ca. 34 km NW, Yankee Basin trail, 1♀ same host, 30-xii-89, SRP; Eagle River trail, 1♀ ex Mustela vison Schreber or Martes americana, 30-xii-89, SRP.

These three records continue a series begun in 1987 with the first record reported by Haas et al. (1989). The range of this large flea was only extended ca. 3.3 km farther NW of Juneau. Although most hystrichopsyllids are associated with insectivores or rodents, this flea infests mustelids. The new records provide support for marten as the true host. The Eagle River mink and marten were packed together in the same container. Only one valid record (1♀) for mink (Haas et al. 1979) exists. Therefore, the original host for the Eagle River record may have been the marten. Thus, 24 specimens (8♂♂, 16♀♀) and 18 collection records (Haas et al. 1978, 1979, 1980, 1982, 1989, present study) in southeastern Alaska including islands are now known. Except for one mink, two humans, and the uncertain host record noted above, all host specimens were marten. There are no Alaskan records from shrews or rodents although such collections have been made in British Columbia and Oregon (Holland 1957; Hopkins and Rothschild 1962; Lewis et al. 1988). Most specimens were from skunks (Spilogale spp.). Holland (1949) also had two females from marten and ermine (Mustela erminea) from Vancouver Island that he excluded from the series of H. spinata new species.

Hystrichopsylla occidentalis occidentalis Holland, 1949

Material examined: USA: AK: Berg Bay, 56°21’49”N, 132°00’29”W, 1♀ ex Clethrionomys gapperi (Vigors) [AF 21819], 4-viii-97, CTS. Echo Cove, 59° 31’45”N, 134°21’58”W, 1♂ ex Clethrionomys rutilus (Pallas) [AF21587], 16-vii-97, CTS. Frost Bay, S side, 56°03’28”N, 131° 58’01”W, 1♀ ex C. gapperi [AF22904], 8-viii-97, CTS. Klukwan, 17 km W & 30 km N, Kelsall River drainage, 1♂, 1♀ ex Peromyscus keeni (Rhoads) [AF8272], 17-vii-94, JAC; same data but C. gapperi [AF2856], 16-vii-94, JAC.

This small relative of H. d. spinata is a hygrophilous parasite of shrews, voles (type host: Clethrionomys gapperi) and mice and occurs in a long narrow range with a noticeable concentration of collection localities along the coast from northern California to southwestern Alaska (Holland 1949: Map 6; Campos and Stark 1979: Fig. 60; Holland 1985: Map 12; Lewis et al. 1988: p. 63). The six new mainland records for five new localities as well as the four earlier records indicate that this flea is uncommon on trapped hosts, in accordance with its behaviour like a nest flea. Consequently, the majority of the fleas reside in nests of the hosts. For example, from two nests of Microtus oeconomus (Pallas) on the Chilkat Peninsula, Haas (1982) collected a total of 5♂♂ and 4♀♀ H. o. occidentalis. This exceeds the total of 2♂♂ and 5♀♀ from the six trapped host specimens listed above. The predominance of nest populations was confirmed for H. occidentalis linsdalei Holland with large samples of nests (179) and hosts (877) during a 2.5-y survey in northern California by Stark (2002). He reported a seasonal association with higher populations in nests of voles than on trapped voles except during a short time in fall.

Sorex cinereus is a new host record for southeastern Alaska. Haas et al. (1980) listed Sorex monticolus Merriam (as Sorex vagrans Baird - see MacDonald and Cook 1996) as a host of H. o. occidentalis near Yakutat. The two species of red-backed voles, C. gapperi and C. rutilus, are also new host records for H. o. occidentalis in southeastern Alaska.
CTENOPHTHALMIDAE
Catallagia charlottensis (Baker, 1898)

Material examined: Hosts were Peromyscus keeni unless otherwise indicated. USA: AK: Gwent Cove, 54°57’00"N, 130°20’00"W, 1♀ [AF26560], 17-viii-98, SOM. Haines, Chilkoot Lake, 59°18’39"N, 135°34’02"W, 2♀ [AF4593], 11-vi-93, MJW. Klukwan, 5 km W of, Klehini River, 59°24’39"N, 136°00’09"W, 1♀ ex Microtus pennsylvanicus (Ord) [AF8036], 29-vi-94, JAC. Mosquito Lake, 59°27’08"N, 136°13’57”W, 1♀ [AF28822], 5-vi-99, AMR. Reflection Lake, W side, 56°00’33"N, 131°34’32"W, 1♀ ex Clethrionomys gapperi [AF29075], 30-vi-99, AMR. Rudyerd Bay, Point Louise, 55°32’42"N, 130°52’13"W, 1♀ ex C. gapperi [AF29307], 10-vii-99, AMR. Rudyerd Bay, 55°33’16"N, 130°51’33"W, 1♀ [AF29381], 12-vii-99, AMR. Smeaton Bay mouth, 55°18’09"N, 130°50’38"W, 2♀ [AF92976], 9-vii-99, AMR. Taku River, Canyon Island, 58°33’N, 133°41’W, 1♀ [AF8274], JAC; same data but 1♀ [AF8276]. Turner Creek, 58°10’40”N, 133°57’30”W, 1♀ [AF10126], 20-vii-94, SOM, JAC, CTS. Walker Cove, Ledge Point, 55°42’20”N, 130°53’34”W, 1♀ [AF29458], 14-vii-99, AMR.

The distribution patterns of this hygrophilous nest flea and of H. o. occidentalis are similar (Holland 1963: Fig 2, 1985: Map 14; Lewis et al. 1988: p. 82; Haas et al. 1989: Fig 2; Lewis and Haas 2001). In southeastern Alaska both fleas have been recorded from P. keeni (as P. maniculatus) and M. oeconomicus (nests) at mainland localities (Haas 1982; Haas et al. 1982; Holland 1985). Our new records of these two fleas and a record of C. charlottensis ex C. rutilis in Haines (Holland 1985) linked the fleas as parasites of C. rutilis, C. gapperi, and M. pennsylvanicus on the mainland. Thus far however, only C. charlottensis is known from M. longicaudus in our survey area (Haas et al. 1982). Another similarity in our records for H. o. occidentalis and C. charlottensis from trapped hosts was the infrequency of more than a single specimen collected per host. The larger number of H. o. occidentalis specimens in nests of M. oeconomicus than on all trapped hosts applies to C. charlottensis for its occurrence in the same two nests found along the shore of the Chilkat Peninsula. Both nests were infested with breeding populations from which were collected a total of 13♂♂ (four reared) and 11♀♀ (three reared); an additional male was collected from a third nest. Again, more specimens (25) were collected from nests (3) than those (15) from trapped hosts (12).

CERATOPHYLLIDAE

Ceratophyllum ciliatus protinus Jordan, 1929

Material examined: Hosts were Tamiasciurus hudsonicus (Erxleben) unless otherwise indicated. USA: AK: Berg Bay, 56°21’49”N, 132°02’29”W, 4♀♀, 2♂♂ [AF21810], 2-viii-97, CTS. Chickamin River, Wolf Cabin, 55°46’N, 130°53’W, 1♂ [AF4930], 25-vii-93, SOM. Dyean National Historical Park, 59°30’24”N, 135°20’00”W, 1♀ [AF26585], 19-vii-98, CTS. Gwend Cove, 54°57’00”N, 130°20’00”W, 2♂♂, 1♀ [AF26585], 19-vii-98, SOM. Klukwan, 5 km W, Klehini River, 59°24’39”N, 136°00’09”W, 1♀ [AF8117], 1-vi-94, JAC. Peterson Creek, Juneau Quad., 58°29’N, 134°47’W, 1♀ ex Clethrionomys rutilis [AF8243], 11-vii-94, JAC. Rudyerd Bay, 55°33’16”N, 130°51’33”W, 2♀♀ [AF29409], 13-vii-99, AMR. Taku River, Canyon Island, 58°33’N, 133°41’W, 1♂ ex Peromyscus keeni [AF8272], 17-vii-94, JAC; same data but 2♂♂ [AF8273]. Walker Cove, Hut Point, 55°42’48”N, 130°54’04”W, 1♂ ex P. keeni [AF29442], 13-vii-99, AMR.

This member of the Vancouverian group (Holland 1963) has a typical Northwest Pacific coast distribution similar to two other members of the group, H. o. occidentalis and C. charlottensis (Haddow et al. 1983: Map 17; Holland 1985: Map 71; Lewis et al. 1988: p. 179). These authors described the changes of preferred hosts along the coast from south to north with Townsend’s chipmunk (Neotamias townsendii (Bachman)) in Oregon, Douglas’s squirrel (Tamiasciurus douglasii (Bachman)) in southwestern British Colum-
bida, and the red squirrel (T. hudsonicus) in southeastern Alaska. Originally thought to be the only truly specific flea of the red squirrel in this area of Alaska, this view has been modified as the result of collection of the much wider-ranging true red squirrel flea, Orchopeas caedens Jordan, along the Taku River in 1995 (see below).

Megabothris abantis (Rothschild, 1905)

Material examined: USA: AK: Bartlett Cove, 10 km NW of Gustavus Airport, 58°27'N, 135°53'W, 1♂ ex Clethrionomys rutilis [AF2379], 16-vii-92, collector unknown. Berg Bay, 56°21'19"N, 132°15'01"W, 1♀ ex Clethrionomys rutilis [AF2628], 14-vii-92, SOM; same data but 1♀ [AF2650], 14-vii-92. Taku River, P. keeni [AF29290], 10-vii-99, AMR; same data but 1♀ ex C. gapperi [AF10119]; same data but 1♀ ex Microtus longicaudus [AF10120]. Unuk River mouth, 56°05'N, 131°06'W, 1♂ ex C. gapperi [AF4359], 20-vii-93, SOM et al. Walker Cove, Hut Point, 55°42'48"N, 130°54'04"W, 2♂♀ ex C. gapperi [AF29416], 13-vii-99, AMR. Willard Inlet, 10 km NW of mouth of, 54°49'N, 130°39'W, 1♀ ex P. keeni [AF4299], 9-vii-93, JAC, SOM. Yakutat, 59°30'47"N, 139°40'46"W, 1♀ ex C. rutilis [AF7769], 26-vii-94, CJC, AAT.

Megabothris abantis is a common vole flea in southern regions of Alaska. Holland (1958) originally grouped it with C. charlottensis and C. c. protinus because all three have a similar Pacific Coast distribution. Subsequently, he (Holland 1963: Fig. 2) classified M. abantis as a member of the Cordilleran Group B because it is not restricted to the coastal strip but ranges widely eastward into the Rocky Mountains (Haddow et al. 1983: Map 76, Holland 1985: Map 76).

Other than the closely grouped collection sites on the southeastern Alaska mainland, Holland (1958), Haas et al. (1980), Haas (1982), and Haas et al. (1982) recorded only six other localities, all northwest of the Taku River: Chilkat Peninsula, near Juneau, Klondike Highway at Moore Creek, Mosquito Lake, Taku River, and Yakutat. Twenty-nine of our 34 new mainland records of M. abantis fill the large void mapped by Haas et al. (1989: Fig. 5) southeast of the Taku River with 16 new localities.

The recorded hosts of M. abantis on the mainland are Sorex monticolus (as S. vagrans), P. keeni (as P. maniculatus), C. rutilis, M. oeconomus (nests), M. longi-
collected a total of 45 fleas (18 ♂♂ had breeding populations from which were infested with larger number of trapped hosts. Four nests on the Chilkat Peninsula shoreline (Haas 1982) than on a oeconomus was the best source of fleas from trapped hosts. Our data for Microtus spp., however, were insufficient for analysis with only 3 ♀♀ fleas ex one M. pennsylvanicus and one M. longicaudus. Consequently, the second best source of fleas from trapped hosts was P. keeni with 11 fleas (3 ♂♂, 8 ♀♀) from nine mice. Although M. abantis is not a nest flea, as indicated above with H. o. occidentalis and C. charlottensis, more specimens were found in a series of M. oeconomus nests collected on the Chilkat River valley of Alaska as far south as Haines (Miller and Kellogg 1955).

The distribution of this vole flea coincides almost completely with the range of M. pennsylvanicus over much of northern North America from Yukon Territory to Quebec south into the Rocky Mountains and the western Great Lakes (Haddow et al. 1983: Map 82; Holland 1985: Map 77). The Stikine and Taku River valleys on the southeastern Alaskan mainland also support populations of M. pennsylvanicus (MacDonald and Cook 1996) and may eventually yield additional specimens of M. a. megacolpus.

Malaraeus telchinus (Rothschild, 1905)

Material examined: Hosts _Peromyscus keeni_ except as indicated. USA: AK: Gwent Cove, 54°57’00”N, 130°20’00”W, 3 ♂♂ [AF26560], 17-viii-98, SOM. Rudyerd Bay, 55°33 ’16”N, 130°51’33”W, 1 ♀ [AF29317], 10-vii-99, AMR; 1 ♂, 1 ♀ [AF29361], 11-vii-99, AMR; 2 ♀♀ [AF29379]; 2 ♀♀ [AF29381]; 1 ♀ [AF29382], 12-vii-99, AMR; same locality but 1 ♀ ex _C. gapperi_ [AF29375], 12-vii-99, AMR; same data but [AF29378]. Rudyerd Bay, Point Louise, 55°32’42”N, 130°53’34”W, 1 ♂ [AF29372], 12-vii-99, AMR. Walker Cove, Ledge Point, 55°42’20”N, 130°53’34”W, 1 ♀ [AF29417], 12-vii-99, AMR; 1 ♂, 3 ♀♀ [AF29458], 14-vii-99, AMR; same locality but 1 ♀ ex _C. gapperi_ [AF29416], 13-vii-99, AMR.

The western vole and mouse flea, _M. telchinus_, eluded detection in Alaska until 3 ♂♂ were collected from one _P. keeni_ at
Gwent Cove (across Pearse Canal from Pearse Island, British Columbia) in 1998. The next two localities were farther north at Rudyerd Bay where 2♂♂ and 9♀♀ were collected ex six P. keeni, and 2♀♀ ex 2 C. gapperi. The collector (AMR) then moved north to Ledge Point on the south shore of the mouth of Walker Cove and established the most northern locality for M. telchinus in North America with 1♂ and 4♀♀ ex two P. keeni and 1♀ ex C. gapperi. This new locality is ca. 236 km northwest of Kitimat, the most northern mainland locality in British Columbia (Holland 1985). Holland (1949, 1985) listed other M. telchinus offshore records close to southeastern Alaska on the Queen Charlotte Islands and Pitt Island. Most of his many records were clustered farther southeastward in British Columbia at inland montane and coastal localities (Holland 1985: Map 84). South of Canada these populations diverge into a coastal branch that reaches southern California and a montane branch that almost bypasses the Great Basin to reach the mesic habitats on mountains and high plateaus in Arizona and New Mexico (Haddow et al. 1983: Map 74).

Malaraeus telchinus is recorded from a wide range of hosts. Haddow et al. (1983) listed four Peromyscus species as the major hosts of M. telchinus but omitted P. sitkensis Merriam (= P. keeni, see Hogan et al. 1993); no Clethrionomyss species were listed. Holland (1949, 1985) only listed four records from C. gapperi including one for Kitimat. The great majority of hosts on the mainland were P. maniculatus with P. keeni in the Queen Charlotte Islands. Clethrionomys californicus (Merriam) is a major host in Oregon; Lewis et al. (1988) reported more specimens of M. telchinus from this vole than from each of two Peromyscus species, three Microtus species, and Lemmiscus curtatus (Cope). This wide host range of M. telchinus confirms adaptability for changing major hosts when entering a region with a different fauna of potential hosts (e.g. moving from mainland British Columbia and P. maniculatus to mainland southeastern Alaska and P. keeni). We expect that M. telchinus occurs north of its present known northern range limit of Walker Cove because P. keeni occurs on the mainland north to Haines and Skagway (MacDonald and Cook 1996) and this flea occurs in “rather mesic habitats” elsewhere (Haddow et al. 1983: p. 108).

Opisodasys vesperalis (Jordan, 1929)

Material examined: All ex northern flying squirrels, Glaucomys sabrinus (Shaw). USA: AK: Chilkat River, 6.3 km WNW of Haines, 59°15’42”N, 135°33’35”W, 2♂♂, 1♀ [AF12539], 4-vii-95, CTS. Rudyerd Bay, 55°33’16”N, 130°57’33”W, 2♂♂, 3♀♀ [AF29318], 10-vii-99, AMR. St. James Bay, W side Lynn Canal, 58°34’30”N, 135°09’30”W, 1♂, 2♀♀ [AF10306], 9-i-95, JF.

Glaucomys sabrinus, the host of O. vesperalis, is found along the mainland of southeastern Alaska, and on islands in the Alexander Archipelago south of Frederick Sound (MacDonald and Cook 1996). Records of its fleas are few with only one for the mainland and one for Revillagigedo Island (Haas et al. 1982, 1989: Fig. 7). Our three new records are the first for trapped hosts (the mainland collection near Skagway was from a nest). Lacking a pleural arch, O. vesperalis is a crawling nest flea (rather than a jumping flea) and remains in the nest when the host is absent (Traub 1972). Collections from other mammals are strictly accidental and rare; the flea is “essentially specific to Glaucomys sabrinus” (Haddow et al. 1983: p. 130). Opisodasys vesperalis is among the minority of fleas considered to be “ultraspecific”, i.e., “limited to infestation of a single species of host” (Traub 1985: p. 332). It is a west coastal flea ranging from southeastern Alaska to northern California and eastward into montane squirrel habitat as far as Idaho and Montana (Haddow et al. 1983: Map 107; Holland 1985: Map 89; Lewis et al. 1988: p. 201; Haas et al. 1989: Fig 7).

Opisodasys keeni keeni (Baker, 1896)

Material examined: USA: AK: Chickamin River, Wolf Cabin, 55°46’N, 130°53’W, 3♀♀, 1♂ ex Peromyscus keeni [AF4953], 26-vii-93, SOM et al.; same data...
but 1♀ ex *Synaptomys borealis* [AF4973]. Crescent Lake, 58°11′N, 133°19′W, 5♂♂, 7♀♀ ex *P. keeni* (4) [AF8309, 8310, 8311, 8316], 22-vii-94, SOM. Echo Cove, 58°31′45″N, 134°54′28″W, 2♂♂, 5♀♀ ex *P. keeni* [AF21759], 21-vii-97,CTS. Gwent Cove, 54°57′00″N, 130°20′00″W, 3♂♂, 4♀♀ ex *P. keeni* [AF26560], 17-viii-98, SOM. Reflection Lake, SW side, 55°59′59″N, 131°33′59″W, 5♀♀ ex *P. keeni* [AF29116], 1-vii-99, AMR. Rudyerd Bay, 55°18′09″N, 134°54′28″W, 2♂♂, 5♀♀ ex *P. keeni* (2) [AF29317, 29320], 10-vii-99, AMR; same data but 2♀♀ (2) [AF29360, 29361], 11-vii-99; same data but 4♂♂, 11♀♀ (5) [AF29379, 29380, 29381, 29382, 29383], 12-vii-99; same data but 3♂♂, 1♀ (2) [AF29407, 29408], 13-vii-99. Rudyerd Bay, Point Louise, 55°32′42″N, 130°50′38″W, 1♂, 4♀♀ ex *P. keeni* (3) [AF29428, 29438, 29442], 13-vii-99. Walker Cove, Hut Point, 55°42′20″N, 130°53′34″W, 1♂ ex *P. keeni* [AF29458], 14-vii-99, AMR.

This common and abundant *Peromyscus* flea is another member of the Vancouverian Group (Holland 1963) with a west coastal distribution including the Queen Charlotte Islands, extending eastward into montane habitats of its major host *P. maniculatus* in British Columbia and Alberta (Holland 1949: Map 28, 1985: Map 88). Southeast of Canada *O. k. keeni* occurs in Montana, Utah, Colorado and New Mexico (Ecke and Johnson 1952; Stark 1959; Eads and Campos 1983; Haddow et al. 1983: Map 108; Fagerlund et al. 2001; Ford et al. 2004). Its coastal range extends from northern California as far north as Skagway, Alaska (Haas et al. 1982; Haddow et al. 1983: Map 108; Lewis et al. 1988: p. 203). In British Columbia, *O. k. keeni* and *M. telchinus* have the same host, *P. maniculatus* (*P. keeni* in the Queen Charlotte Islands), and distribution (Holland 1985: Maps 84 & 88). Host sharing by these fleas also occurs in southeastern Alaska: with *M. telchinus*, *P. keeni* was host for nine collections, *C. gapperi* for three; with *O. k. keeni*, *P. keeni* was host for 37 collections (43♂♂, 55♀♀) and *S. borealis*, a new host record, was host for one (♀).

Orchepoa caedens (Jordan, 1925)

Material examined: USA: AK: 500 m S of Taiya River bridge, 59°30′11″N, 135°20′44″W, 1♀ ex *Tamiasciurus hudsonicus* [AF12525], 1-vii-95,CTS, KDS.

The collection of 1♀ of the common, “ultraspecific” (Traub 1985) red squirrel flea, *O. caedens*, in southeastern Alaska was unexpected. The niche was already filled by *C. ciliatus protinus*, an arboreal squirrel flea well-adapted to the west coastal maritime climate on the coast and islands of British Columbia and north through the length of southeastern Alaska. Until now, there has been no record of *O. caedens* within the range of the red squirrel in this region. Elsewhere, *O. caedens* is found throughout most of the transcontinental range of the red squirrel and occurs with other red squirrel fleas, such as *Ceratophyllus vison* Baker and *Tarsopsylla octodecimdentata coloradensis* (Baker) in nests in Alaska west of the Yukon Territory (Haas and Wilson 1982). The limiting factor for *O. caedens* in southeastern Alaska is probably the high humidity and precipitation of the coastal climate. The Taiya River valley lies in the area of lowest mean annual precipitation in southeastern Alaska, i.e., less than 101.6 cm (Watson 1959).
Nineteen mammal fleas have been documented for southeastern Alaska (Haas et al. 1989). Three of these are known only from islands: the bat flea, Myodopsylla gentilis Jordan and Rothschild, and the bear flea, Chaetopsylla tuberculaticeps (Bezzi), on Admiralty and Chichagof Islands (Haas et al. 1979, 1980, 1989) and the dog flea, Ctenocephalides canis (Curtis), on Revilla-gigedo Island (Holland 1985: p. 38). Our three additions (M. asio megacolpus, M. telchinus and O. caedens) bring the mainland total to 19 taxa. Because of the high humidity and precipitation in the area, these new records (especially that of O. caedens) were not expected.

We have tried to collect the northern Peromyscus maniculatus flea, Aetheca thamba (Jordan), in the Klondike Highway pass at the Alaska/British Columbia border without success. Holland (1949: Map 40, 1958: Fig. 5, 1985: Map 73) mapped and discussed the split distribution pattern of transcontinental A. thamba (then Monopsyllus thambus). Most of the many records range from southern Yukon Territory (e.g., 1.6 km S of Carcross) eastward into northern British Columbia (e.g., Atlin) to northern and southern Alberta, northwestern Saskatchewan, and southwestern Northwest Territories. A small disjunct population exists in Quebec and Labrador. The proximity of many collections of a cold climate flea from a common and abundant host are conditions favourable for the collection of A. thamba in the northern Alaska/British Columbia border passes.

The bushy-tailed woodrat, Neotoma cinerea (Ord), is one of several wide-ranging mammals of British Columbia that has established itself in corridors of some major rivers such as the Taku, Stikine and Unuk that transect the Alaska/British Columbia border mountains (MacDonald and Cook 1996). The common woodrat flea, Orchopeas agilis (Rothschild) (formerly O. sexdentatus agilis), is the most widespread member of the sexdentatus group. It ranges from high mountains with the cool summers required by N. cinerea in New Mexico and Colorado northwestern to British Columbia (e.g., Atlin) and questionably Yukon Territory (Finley 1958; Haas et al. 1973; Holland 1985: Map 94; Lewis 2000; Haas et al. 2004). Holland (1949: Map 73) mapped two localities on the Alaska/British Columbia border but none in Alaska. We believe O. agilis probably occurs on the southeastern Alaskan mainland where N. cinerea occurs. Well sheltered nests should be good sources of fleas in that region.

ACKNOWLEDGEMENTS

ACKNOWLEDGEMENTS

DISCUSSION

We thank C. J. Conroy, J. Foreit, R. Heinen, S. R. Peterson, C. T. Seaton, K. D. Stone, A. A. Tsvetkova and M. J. Wike for collecting, labeling and preserving the flea specimens regardless of difficult field conditions. We thank the US Fish and Wildlife Service, USDA Forest Service, and Alaska Department of Fish and Game for financial and logistic support for the fieldwork. Michael K. MacDonald kindly reviewed the manuscript.
REFERENCES

