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Supercolonies of the invasive ant, Myrmica rubra 
(Hymenoptera: Formicidae) in British Columbia, Canada 
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ABSTRACT 
Levels of intra-specific aggression between workers and mtDNA sequence 
comparisons were used to demonstrate that the non-native, invasive ant, Myrmica 
rubra L. has formed supercolonies in southwestern British Columbia.  Ants from 
most, but not all, infested areas act aggressively towards ants from other areas but 
workers from widely separated locations within two of the largest areas show little 
aggression towards each other. Comparisons of COX1 mtDNA nucleotide 
sequences suggest that formation of different supercolonies may have followed 
possible divergence after a single initial introduction to the province. 
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INTRODUCTION 
Worldwide, over 150 species of ants have been introduced into new environments 

(McGlynn 1999) but a small number have become invasive, i.e., have reduced native ant 
biodiversity (Holway et al. 2002). Naumann and Higgins (2015), Gargas et al. (2007), 
and McPhee et al. (2012) have all reported that recently-established populations of 
Myrmica rubra L. in northeastern North America and the Pacific Northwest have all the 
characteristics of an invasive ant. In southwestern British Columbia M. rubra populations 
have dramatically decreased the incidence and abundance of previously established ants 
in three different plant communities: a well-drained riparian zone dominated by 
cottonwood (Populus balsamifera subsp. trichocarpa (Torrey and Gray) Brayshaw; 
Salicaceae) and Scotch broom (Cytisus scoparius (Linnaeus) Link; Fabaceae); a moister, 
more shaded community, dominated by red alder (Alnus rubra Bongard; Betulaceae), and 
two exotic blackberries, Himalayan blackberry (Rubus discolor Weihe and Nees; 
Rosaceae), and evergreen blackberry (Rubus laciniatus Willdenow); and grassy fields 
(Naumann and Higgins 2015).  They also occur at unusually high densities compared to 
previously established species.  Myrmica rubra represented more than 99.99% of the 
total ant fauna caught in the infested areas, and their capture numbers in the plant 
communities ranged from 10 to 1300 times the total number of all ants collected in 
corresponding M. rubra-free areas.  The numbers of several other taxa of insects and 
non-insect arthropods were also reduced where M. rubra was present (also reported by 
Gargas et al. 2007).   

Myrmica rubra is native to Northern Europe and western Asia and was first 
documented in North America in Massachusetts in 1908 (reviewed in Groden et al. 
2005).  It has now been reported in all Canadian provinces east of Manitoba and in at 
least six northeastern United States, and Washington state.  Most of the reports are from 
within the last ten years, suggesting that the North American populations are expanding  

 Departments of Biology and Health Science, Langara College, 100 W 49 Ave., Vancouver, BC 1

V5Y2Z6; kennethnaumann@langara.ca
 Department of Biology, Langara College2

 lewisele@gmail.com3

 6675 Waltham Ave., Burnaby, BC, V5H3V6; roshananoronha@gmail.com 4



J. ENTOMOL. SOC. BRIT. COLUMBIA 114, DECEMBER 2017 !57

(Wetterer and Radchenko 2011).  North American populations have not been observed to 
produce flying females (Hicks 2012), so spread is suspected to occur via the transport of 
garden products and by colony budding.  The species likely established in southwestern 
British Columbia over 20 years ago but went relatively unnoticed for several years 
(Higgins 2013).  Myrmica rubra comes to the attention of the public mostly because of a 
painful sting and high densities.  Stinging is an unusual feature among the ant species 
listed from British Columbia (Naumann et al. 1999) and can make yard and garden work 
difficult and cause distress for pets. There is also concern that these ants may be 
interfering with the successful nesting of some birds (Higgins 2013).  Robinson et al. 
(2013) estimated that the economic cost of this species in British Columbia could reach 
$100 million/year if it spreads across its potential range in the province. 

The formation of supercolonies may contribute to the ability of invasive ant species to 
monopolize resources.  An ant supercolony can be defined as a population of ants that 
exists over a large, contiguous area and in which ants move freely between nests and 
appear to show no aggression to conspecifics. (Haines and Haines 1978; Moffett 2012). 
Ants within a supercolony are so numerous that is impossible for all members of the 
colony to interact in their lifetime (Pedersen et al. 2006). 

Holway et al. (2002) give a thorough review of the reported interactions between 
invasive and native ants worldwide.  Especially common are reports that invasive species 
show greater efficiency at exploiting resources.  Better resource utilization could be due 
to a larger force of workers, i.e., more scouts and more foragers to recruit, and/or 
physical aggression toward other species at a food item (Garnas et al. 2014). 
Supercolonies are typically seen only in non-native populations and are typified by being 
multiple-nested, multiple-queened, and lacking distinct behavioural boundaries among 
physically separate nests. This sort of colony organization has allowed a small number of 
non-native invasive species such as the Argentine ant, Linepethema humile (Mayr) (on all 
continents except Antarctica); the little fire ant, Wasmannia auropunctata (Roger) (in 
Africa, the Americas, and some Pacific islands); and the African big-headed ant, 
Pheidole megacephala (Fabricius) (all continents except for Antarctica), to attain high 
local abundances and consequently to dominate entire habitats (Holway et al. 2002). The 
‘Large Supercolony’ of L. humile in California spans 1,000 km in distance (Moffett 
2012). An apparent absence of intraspecific aggression within such supercolonies may 
free up time and energy for other uses. 

The purpose of this study was to gain a better understanding of how M. rubra has 
come to dominate its new habitat in BC by determining if supercolony formation has 
occurred. The number of behviourally and genetically distinct colonies may give insights 
into whether there has been a single successful introduction or more than one.  

METHODS AND MATERIALS 
This study was carried out using ants from seven geographically distinct populations 

of M. rubra in southwestern BC. Prior to this study, there was no indication of whether 
those populations are the product of a single introduction or more than one. The 
frequency of aggressive interactions between workers was used to determine whether 
ants from the different areas, and from within them, treated each other as nestmates.  The 
degree of genetic similarity of workers from the same seven areas was estimated by 
comparing nucleotide sequences of the mtDNA gene for cytochrome oxidase subunit I. It 
was hoped that this would provide a molecular level confirmation of any patterns of 
relatedness suggested by the behavioural data.   

i) Sourcing and rearing the ants. Colonies of several hundred workers and at least 
two queens were collected in the last week of May and first week of June 2014 from 
nests within seven areas of infestation: Sea Island (Richmond), Fraser River Park 
(Vancouver), Inter River Park (North Vancouver), University of BC (Point Grey), 
Chilliwack, south Burnaby, and Oak Bay on Vancouver Island.  It is unlikely that M.  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rubra has been established in each area for the same length of time. The source colonies 
for this study were not identical in size, and not all workers were captured but the 
assumption was made that this would not have an important influence on the behaviour 
or individual workers. Each captured colony was maintained, in a laboratory, in a soil-
free, 34 x 23 x 8 cm lidded, plastic tub which contained an aluminum foil-covered, 13 x 
9.5 x 5 cm plastic container that acted as the nest.  The internal box contained multiple 
folds of moist paper towel.  Each colony was given a supply of water (a water-filled test 
tube stopped with a cotton ball), 1:1 honey water mixture, apple slices, and recently 
killed meal worms, and kept on a 12:12 h light-dark cycle. 

ii) Inter-nest worker aggression between infestation areas. The level of aggression 
in interactions between ant workers of the same species has often been used as a proxy 
for levels of genetic difference – i.e. as a method of determining nest mate recognition – 
and many types of bioassays have been reported (Roulston et al. 2003). The recognition 
system that ants use for identification with a colony and rejection of aliens is based on 
shared cues, typically a colony-specific odour blend generated by queens or workers 
(d’Ettorre and Lenoir 2010), although food and other environment factors can have an 
influence (Liang and Silverman 2000).  Our aim was to use the level of aggression 
between workers from the seven different areas as a correlate of the degree of genetic 
similarity. To minimize the confounding effects of foods and odours brought into the lab 
colonies from their original environments, all colonies were maintained for at least one 
week prior to being used for bioassays. It was assumed that several weeks in the lab 
would not diminish the tendency for ants from different colonies to fight, which we 
defined as ants locked together as they grasped each other with their mandibles. 

Methods to measure the level of intraspecific aggression were similar to Roulsten et 
al. (2003) and are summarized as follows. Sets of workers from each area of infestation 
were matched with workers from a nest from each of the other areas.  There were eight to 
ten replicates (trials) for each pair.  For each trial, five foragers from each of two colonies 
were transferred to a fluon-coated 250 ml glass beaker which acted as a neutral arena.  
The number of ants engaged in fights was recorded during five-second scan surveys 
carried out once every minute for 10 minutes.  For comparisons, we used the average (of 
10 observations) percentage of ants involved in fights at one time across all colony pairs. 
For half of the replicates, the first five ants into the arena came from one of the colonies 
within each pair; for the other half, they came from the second colony.  Controls 
consisted of bioassays of two groups of five ants from the same colony. 

The aggression bioassays were repeated a minimum of four weeks after capture, i.e., 
during the second week of July, 2014. This was meant to test both that the initial one-
week latent period in the lab had been long enough to remove the effects of environment, 
and that maintenance in the lab did not result in loss of aggression. This length of delay 
was chosen because laboratory colony populations were beginning to decline at that time. 
Colonies collected from Oak Bay were not included in this particular test because of 
diminished worker numbers. 

Within Infestations. The level of inter-nest aggression was also measured between 
nests from within two of the largest areas of infestation, Sea Island in Richmond and 
Fraser River Park in Vancouver.  At Sea Island, four nests were collected at 
approximately 500 m intervals along a 2 km transect line; at Fraser River Park, three 
nests were collected approximately 300 m apart along a 1 km transect line.  As before, 
the nests were reared in the laboratory, as described above.  Aggression bioassays were 
carried out one week after the establishment of the nests; n = 6-10 for each pairing. 

ii)  The Genetic similarity of ants from different M. rubra populations. 
Differences in mtDNA nucleotide sequences were measured as a way to determine if 
there had been a single successful introduction of M. rubra into BC, or more than one.  It 
was also hoped that mtDNA differences could allow for discernment of ants from 
different areas, i.e., different possible supercolonies. All mtDNA samples were collected 
from workers from the nests used for the aggression bioassays.   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DNA was extracted from ants using a modified procedure of Schlipalius et al., 2001. 
This procedure allowed for the use of whole insects combined with particular primers 
that limit the possibility of contamination with microbial DNA. Individual frozen ants 
were removed from storage at –80ºC and immediately crushed in the bottom of a 1.5 ml 
Eppendorf tube with an extraction buffer consisting of 30µl of boiling 5% Chelex in TE. 
Each tube was then placed into a boiling water bath for 15 min and centrifuged at 13,000 
rpm for 10 min. 20 µl of the supernatant was removed from each sample, and put into 
storage at –20ºC for later use as template DNA in PCR reactions. 

The PCR primer pair LC1490 and HCO2198  (Folmer et al. 1994) were used for the 
amplification of a 710 bp partial coding sequence of mitochondrial cytochrome oxidase 
subunit I (COX I). Primers were custom synthesized by INVITROGEN/ Life 
Technologies TM. PCR was done using 2 µl of PCR buffer, 1 µl of 1 µM of primer 
solution, 1 µl of Taq polymerase (Amplitaq, from Life Technologies), 1 µl of a 2 mM 
dNTP, and 1 µl ant DNA, with dH2O added to a total volume of 20 µl. PCR was run on a 
Techne Techgene thermal cycler. The program settings were: initial denaturation at 95ºC 
for 2 minutes; 30 cycles of the following: 30 seconds at 94ºC, 45 seconds at 50ºC, 2 
minutes at 72ºC, and a final extension for 5 minutes at  72ºC. Successful amplification of 
single 710 bp DNA from all ants was confirmed by agarose gel electrophoresis (data not 
shown) and purified using a QIAquick PCR Purification Kit from QIAGEN. DNA was 
sequenced using the Sanger method on an Applied Biosystems 3730 DNA analyzer at the 
NAPS Unit at the University of British Columbia, Vancouver, BC. 

Formica sinensis. Wheeler cytochrome oxidase subunit partial coding sequence 
(Accession EU983580) was used as an outgroup to determine the order of descent among 
DNA sequences. Phylogenetic analyses were done using MEGA7 (Kumar et al. 2016). 
Sequences were imported into MEGA7 as fasta files and MUSCLE was used to generate 
an alignment using the ALIGN CODONS option. Phylogenetic trees were generated 
using the Maximum Likelihood Estimation (Tamura 1992; Felsenstein 1985). Initial trees 
for the heuristic search were obtained automatically by applying Neighbor-Join and 
BioNJ algortihms to a matrix of pairwise distances estimated using the Maximum 
Composite Likelihood approach, and then selecting the topology with superior log 
likelihood value.  The analysis involved 17 nucleotide sequences.  Codon positions 
included were 1st+2nd+3rd+Noncoding.  All positions with less than 95% site coverage 
were eliminated – i.e., fewer than 5% alignment gaps, missing data, and ambiguous bases 
were allowed at any position.  There were a total of 438 positions in the final dataset.  

RESULTS 
Aggression Bioassays. With the exception of one pairing of localities, ants from 

nests originating in different areas of southwestern BC showed high levels of worker-
worker aggression (Table 1). This included ants from Sea Island and Fraser River Park, 
which are separated only by an arm of the Fraser River.  The exception was a lack of 
aggression observed when ants from Inter River Park in North Vancouver encountered 
ants from Point Grey (University of British Columbia, Vancouver).  The patterns of 
fighting between workers from different localities did not change when tested again a 
further four weeks after the nests were brought into the laboratory (Table 2). 

There was comparatively little fighting between ants from nests within the Sea Island 
or Fraser River Park M. rubra populations, even when nests were as much as 2 km apart 
(Table 3).   

Genetic Comparisons. Figure 1 shows that the nucleotide sequences of the COXI 
subunits of the ants from the different outbreak areas fell into two groups.  The North 
Vancouver and Point Grey ants were within the same group.  Different samples from 
Fraser River Park in Vancouver fell within either group. 
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Table 1 
Mean percentage (+ SD) of ants from different pairs of colonies engaged in fights after one 
week of laboratory rearing.  The ants were from nests in seven different areas of southwestern 
British Columbia. FR Park = Fraser River Park, Vancouver. Data with different superscripted 
letters are significantly different (p < 0.05; ANOVA and LSD multiple comparison tests; F = 
104.6; df = 20; P<0001.  Same-nest comparison data were not included in the statistical 
analysis).   
  Oak Bay   Burnaby   Chilliwack   UBC        N Van      FR Park   Sea Is 

Sea Is  74(12)e      51(22)c     72(28)ef     79(24)efg     44(26)b      62(19)d       0 

FR Park                87(7)hi       81(13)fgh   83(12)gh     84(5)gh       80(13)efg      0 

N Van  78(12)efg    52(6)c       80(13)efg      0(0)a          0 

UBC  92(27)efg    54(20)c     90(7)i           0 

Chilliwack 55(16)c      83(6)gh        0 

Burnaby                79(10)efg      0 

Oak Bay         0 

Table 2 
Mean (+ SD) percentage of ants from different pairs of colonies engaged in fights after six 
weeks of laboratory rearing.  The ants were from nests in six different areas of southwestern 
British Columbia.  FR Park = Fraser River Park, Vancouver; nests from a seventh locality 
(Oak Bay) were not tested at the six week interval.  Data with different superscripted letters 
are significantly different (p < 0.05; ANOVA and LSD multiple comparison tests; F = 94.7; df 
= 12; P<0.0001)).  *Insufficient ants. 

  Burnaby   Chilliwack    UBC        N Van      FR Park   Sea Is 

Sea Is  69(20)de     53(21)c      61(16)d     64(14)d      21(15)b        0 

FR Park               51(18)d       73(10)ef     79(4)f        77(11)f       0 

N Van  43(23)c       83(7.5)f       3(8)a         0 

UBC      *                *               0 

Chilliwack 63(21)d         0 

Burnaby                   0 

    DISCUSSION 
Invasive populations of M. rubra have formed at least two large, multi-nest 

supercolonies in BC, and it is reasonable that the same phenomenon has occurred in the 
other distinct areas of infestation.  The one on Sea Island is several kilometers across 
and, as individual nests are often less than 5m apart, must contain thousands of nests and 
millions of individual ants.  This type of colony organization may be contributing to the 
displacement of native ants and other epigaeic species that was reported by Naumann and 
Higgins (2015).  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Based on aggression bioassays, most of the major outbreak areas of M. rubra in 
southwestern BC represent different super-colonies, but workers from UBC and North 
Vancouver interact as if they are nest mates, suggesting either a relatively recent common 
origin, or that one site was the source of the founding population of the other.   

Table 3 
Mean (+ SD) percentage of ants from different pairs of colonies within the same outbreak 
areas; SI = Seal Island; FP = Fraser River Park) that engaged in fights after one week of 
laboratory rearing.  The ants were from nests separated by approximately 500 m (SI) or 300 m 
(FR) intervals along a transect line.     

 SI1    SI2   SI3 SI4   FP1 FP2      FP3 
    
SI4 2(7)    3(6)     0   0  FP3   0 4(6) 0
  
SI3 3(6)    2(6)     0   FP2   0   0 

SI2 13(10)     0    FP1   0 

SI4 0 

Levels of aggression between ants from different colonies are frequently used as a 
proxy for levels of genetic difference (Roulsten et al. 2003).  In this study, patterns of 
aggression did not change markedly after a minimum of four weeks in the lab, suggesting 
that it was not chemical cues associated with the original environments that led to 
recognition of individuals from different locations, but rather colony-specific odor blends 
generated by queens or workers (d’Ettorre and Lenoir 2010), and likely to be genetically 
based. 

We did not find enough molecular diversity in COXI to be able to distinguish 
between different populations of M. rubra in southwestern BC but the significant 
separation into two groupings, with ants from Fraser River Park common to both, suggest 
that an original introduction into BC may have occurred near there, and that divergence 
of this subunit occurred later.  The observation that ants from within the Fraser River 
outbreak treat each other as nest mates argues against two genetically unique 
introductions.  The similarity of the COXI sequences of the non-aggressive ants from 
UBC and North Vancouver provides further evidence that those two groups of ants are 
particularly closely related.  Hicks et al. (2012), also using mtDNA, reported evidence 
that M. rubra populations on Newfoundland have come from at least four distinct 
sources, including the UK and the Northeastern USA.  We do not yet have enough data to 
speculate on the possible source of the M. rubra populations in BC. 

Possible mechanisms for the superior competitive abilities of invasive ant populations 
include direct aggression, superior recruitment to resources, and higher activity levels.  
Garnas et al. (2014) reported that M. rubra shows both higher levels of recruitment and 
aggression towards native ant species in Maine, USA; foragers consistently discover 
baits faster and displace foragers from native species.  Foragers from highly populous 
supercolonies with many dispersed nests would have an advantage at discovering, 
recruiting to, and exploiting food resources.  For example, supercolony-forming L. 
humile have been reported to be more numerous than other species in the same area, and 
to be a superior interference competitor that displaces native species from contested 
baits, often via direct physical aggression (Human and Gordon 1996). In addition, lack of 
aggression between workers over large areas could leave more time and energy for 
foraging.  Linepithema humile for example, maintains higher colony activity levels,  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forages for longer periods each day, and recruits in greater numbers to food resources 
than native species (Human and Gordon 1996).  

!  
Figure 1. Molecular phylogenetic tree of the COXI subunit of mtDNA from M. rubra 
workers from different outbreak areas of British Columbia. The tree with the highest log 
likelihood (-1824.1574) is shown.  The percentage of trees in which the associated taxa 
clustered together is shown next to the branches.  The tree is drawn to scale, with branch 
lengths measured in the number of substitutions per site.         

The proximate and ultimate causes of supercolony formation remain inconclusive.  
According to Holway et al. (2002), the phenomenon is more common among ant species 
that are non-native and have become invasive in their newly established environments.  
They also tend to show relatively small size, omnivory, and a tendency towards multiple 
queen nests.  On the other hand, most of these species exhibit similar life histories in 
their native ranges (Moffett 2012), and at least one other ant species, Liometopum 
occidentale Emery, may form large (at least one km in diameter), habitat-dominating 
supercolonies within its home range (Wang et al. 2010).  Failure to form large colonies in 
those areas may be due to constraints by other native species that are aggressive and 
effective competitors.  In other words, it is the release from those competitors in a new 
region that allows for the formation of supercolonies (Moffett 2012).  Supercolony 
formation in M. rubra, as in other supercolony-forming species, may also be related to 
the fact that virgin queens in North America do not carry out mating flights (Hicks 2012), 
although they do in their home range.  Instead, North American queens mate at or near 
the nest and then travel a short distance, with a group of workers, to found a new nest.  
Infestations thus expand relatively slowly via colony budding, and jump to new areas, 
likely through human activities like the transport of infested nursery products.  It is 
possible that lack of contact with conspecifics from other colonies inhibits queen mating 
flights or fails to stimulate them.  If there are no intraspecific competitors in an adjacent 
area, why risk a mating flight when territory that is likely to be suitable lies right next 
door?  Also, the success of incipient colonies is likely to be higher if the queen is not 
alone, and if the number of founding workers is greater (reviewed in Holway et al. 2002). 

Although it is now possible to add M. rubra to the list of invasive ant species that 
share a suite of behavioural features such as supercolony formation, much work needs to 
be done to resolve both the details of the M. rubra’s establishment in different areas of 
North America, and the general mechanisms that lead to the formation of ant 
supercolonies. Do some ants become ecologically dominant because they form 
supercolonies or does the monopolization of resources by certain species lead to 
supercolony formation (Hölldobler and Wilson 1977)?  
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